Estimation of wrist angle from sonomyography using support vector machine and artificial neural network models.
نویسندگان
چکیده
Sonomyography (SMG) is the signal we previously termed to describe muscle contraction using real-time muscle thickness changes extracted from ultrasound images. In this paper, we used least squares support vector machine (LS-SVM) and artificial neural networks (ANN) to predict dynamic wrist angles from SMG signals. Synchronized wrist angle and SMG signals from the extensor carpi radialis muscles of five normal subjects were recorded during the process of wrist extension and flexion at rates of 15, 22.5, and 30cycles/min, respectively. An LS-SVM model together with back-propagation (BP) and radial basis function (RBF) ANN was developed and trained using the data sets collected at the rate of 22.5cycles/min for each subject. The established LS-SVM and ANN models were then used to predict the wrist angles for the remained data sets obtained at different extension rates. It was found that the wrist angle signals collected at different rates could be accurately predicted by all the three methods, based on the values of root mean square difference (RMSD<0.2) and the correlation coefficient (CC>0.98), with the performance of the LS-SVM model being significantly better (RMSD<0.15, CC>0.99) than those of its counterparts. The results also demonstrated that the models established for the rate of 22.5cycles/min could be used for the prediction from SMG data sets obtained under other extension rates. It was concluded that the wrist angle could be precisely estimated from the thickness changes of the extensor carpi radialis using LS-SVM or ANN models.
منابع مشابه
Application of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data
This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values. Seismic surveying was performed next on these models. F...
متن کاملBubble Pressure Prediction of Reservoir Fluids using Artificial Neural Network and Support Vector Machine
Bubble point pressure is an important parameter in equilibrium calculations of reservoir fluids and having other applications in reservoir engineering. In this work, an artificial neural network (ANN) and a least square support vector machine (LS-SVM) have been used to predict the bubble point pressure of reservoir fluids. Also, the accuracy of the models have been compared to two-equation stat...
متن کاملEstimation of Iron concentration by using a support vector machineand an artificial neural network - the case study of the Choghart deposit southeast of Yazd, Yazd, Iran
Estimation of the metal value in the metallic deposits is one of the important factors to evaluate the deposits in exploration studies andmineral processing. Therefore, one accurate estimator is essential to obtain a fine insight into the accumulation of the ore body. Thereare geostatistical methods for the estimation of the concentration of iron which performance of these models is complexity ...
متن کاملPrediction of true critical temperature and pressure of binary hydrocarbon mixtures: A Comparison between the artificial neural networks and the support vector machine
Two main objectives have been considered in this paper: providing a good model to predict the critical temperature and pressure of binary hydrocarbon mixtures, and comparing the efficiency of the artificial neural network algorithms and the support vector regression as two commonly used soft computing methods. In order to have a fair comparison and to achieve the highest efficiency, a comprehen...
متن کاملAssessment the Performance of Support Vector Machine and Artificial Neural Network Systems for Regional Flood Frequency Analysis (A Case Study: Namak Lake Watershed)
Flood discharge estimation with different return periods is one of important factors for water structures design and installation. On the other hand, a lot of rivers existing in Iran watersheds have no complete and accurate hydrometric data. In these cases, one of the suitable solutions to estimate peak discharges with different return periods is the regional flood analysis. In this research, 5...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical engineering & physics
دوره 31 3 شماره
صفحات -
تاریخ انتشار 2009